An Unsteady Adaptation Algorithm for Discontinuous Galerkin Discretizations of the RANS Equations
نویسندگان
چکیده
An adaptive method for high-order discretizations of the Reynolds-averaged NavierStokes (RANS) equations is examined. The RANS equations and Spalart-Allmaras (SA) turbulence model are discretized with a dual consistent, discontinuous Galerkin discretization. To avoid oscillations in the solution in under-resolved regions, particularly the edge of the boundary layer, artificial dissipation is added to the SA model equation. Two adaptive procedures are examined: a standard output-based adaptation algorithm that requires the steady state solution to estimate the error and a new, unsteady approach that allows the mesh to be adapted without requiring a steady state solution. Results show that the combination of a dual consistent discretization with artificial dissipation and adaptation has significant promise as a practical method for obtaining high-order RANS solutions.
منابع مشابه
High-Order Discontinuous Galerkin Methods for Turbulent High-lift Flows
In this work a robust discontinuous Galerkin (DG) solver for turbulent high-lift aerodynamic flows using the turbulence model of Spalart and Allmaras (SA) is developed. The application of DG discretizations to turbulent RANS flows is one of the most pressing issues facing high-order methods on unstructured grids. The issue is the result of non-smooth behavior of the turbulence model equation, w...
متن کاملA Hybridized Discontinuous Galerkin Method on Mapped Deforming Domains
In this paper we present a hybridized discontinuous Galerkin (HDG) discretization for unsteady simulations of convection-dominated flows on mapped deforming domains. Mesh deformation is achieved through an arbitrary Lagrangian-Eulerian transformation with an analytical mapping. We present details of this transformation applied to the HDG system of equations, with focus on the auxiliary gradient...
متن کاملHigh order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows
In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...
متن کاملOutput error estimation strategies for discontinuous Galerkin discretizations of unsteady convectiondominated flows
We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection-dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time-integral quantities are considered for scalar outputs and the...
متن کاملError Estimation and Adaptation in Hybridized Discontinous Galerkin Methods
This paper presents an output-based error estimation and adaptation strategy for hybridized discontinuous Galerkin discretizations of firstand second-order systems of conservation laws. A discrete adjoint solution is obtained by a Schurcomplement solver similar to that used in the primal problem. An error estimate is obtained by computing the adjoint on an enriched solution space that consists ...
متن کامل